

Removal of Cd from nitrophosphate solutions

Svetlana Sand Dag Øistein Eriksen

Occurrence of Cd in our food chain via fertilizers

Cadmium (Cd) is a non-nutritive toxic heavy metal

Cd occurs naturally in apatite with sedimentary origin which is often used as a raw material in production of phosphate-based fertilizers

Cd from fertilizers can accumulate in soil and, thus, can be absorbed by crops, which will lead consumers to ingest Cd.

EU ENVI Committee supports Cd limits

On 30 May 2017 the European Parliament Committee on the Environment, Public Health and Food Safety voted to support the use of safer phosphate-based fertilizers for EU countries. The proposed regulations:

- Max 60 mg Cd per 1 kg P₂O₅ from the date of application of the regulation
- Max 40 mg Cd per 1 kg P_2O_5 after 3 years
- Max 20 mg Cd per 1 kg P_2O_5 after 9 years

Our mission

-New regulations enforce decreased use of fertilizers with Cd; and hence diminished crops

-Removing Cd from phosphate-based fertilizers allows for their continuous use, which in turn provides sustained crops;

and saves the world from hunger!

UiO **Chemistry**

University of Oslo

«The nitrophosphate process» Erling Johnson, Odda, Norway, 1927

Cd removal step from mother liquor (ML)

Extraction

Solid phase or liquid phase?

In industry:

- 2 000 000 ton per year
 - 5 480 ton per day
 - 228 ton per hour

Solid takes up less physical space relative to liquid, and is more feasible at industrial scale

Choice of an adsorbent for ion exchange

Previous work of Alessio Vascon and Alexander Krivokapic showed that impregnated resins can function as efficient ion exchangers in industrial solutions like our ML

Previous impregnation studies

Resins:

- Purolite MN 200 description
- Amberlite XAD-7 🤙
- Amberlite XAD-2

Extractants:

- Cyanex 301 📥
- Kelex 100 📢

ICP-OES, or ICP-MS, that is the question

TECHNICAL REPORTS: HEAVY METALS IN THE ENVIRONMEN

J. Environ. Qual. 2011, 40, 1863 -1869

A Comparison of Reliability of Soil Cadmium Determination by Standard Spectrometric Methods

M. B. McBride*

Inductively coupled plasma emission spectrometry (ICP– OES) is the most common method for determination of soil Cd, yet spectral and matrix interferences affect measurements at the available analytical wavelengths for this metal. This study evaluated the severity of the interference over a range of total soil Cd by comparing ICP–OES and inductively coupled plasma mass spectrometry (ICP–MS) measurements of Cd in acid digests. Using the emission ANALYTICAL ERROR AND BIAS in determ ments at low levels in soils and plant frequently unrecognized limitation in quan sure to toxic metals (McBride, 1998). In fac are the most difficult of environmental sar analysis by spectrometric methods such as I and Boevski, 1999). Inductively coupled pla spectrometry has the highest rate of false pr

ICP-MS is more accurate technique than ICP-OES for determination of Cd-content in soil samples because of Fe, Ca, and Mg which are also present in apatite

In this presentation

Extraction results of impregnated resins: Amberlite- XAD-4 and XAD-7, and Purolite MN 200 impregnated with extractant Cyanex 301

Bis(2,4,4-trimethylpentyl)dithiophosphinic acid (CYANEX 301)

Extraction process

1 g of impregnated resin + 5 mL of ML adjusted to pH \approx 0.5 raffinate

Comparison of impregnated Amberlite-XAD-7 and XAD-4

Concentration, ppm				
Sample	Amb			
Element	Raffinate XAD-7	Raffinate XAD-4	ML	
Cu	19	21	31	
Cd	5	7	11	
Ni	19	24	28	
Fe	176	517	735	
Zn	321	280	379	

Comparison of impregnated Purolite MN 200 and Amberlite XAD-7

Concentration, ppm				
Element	Raffinate Purolite MN 200	Raffinate Amberlite XAD-7	ML	
Cu	14	13	27	
Cd	6	6	11	
Ni	24	15	23	
Fe	429	192	499	
Zn	273	240	314	

Why do Amberlite- XAD-7 and XAD-4 turn black?

The winner of metal extraction is...

UiO **Department of Chemistry**

University of Oslo

Amberlite- XAD-4 and XAD-7, and Purolite MN 200: Particle properties

Resin	Description	Particle size, μm	Surface area, m ² /g	Pore diameter, Å
Amberlite XAD-4	Polystyrene divinylbenzene	250 - 841	725	40
Amberlite XAD-7	Non ionic aliphatic acrylic polymer	250 - 841	450	90
Purolite MN 200	Polystyrene divinylbenzene	535 ± 85	900	Micropores ≈ 15, meso- and macropores ≈ 800

http://www.sigmaaldrich.com/chemistry/chemical-synthesis/learning-center/technical-bulletins/al-142/amberlite-amberlyst.html#A2 http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_097e/0901b8038097ef0b.pdf?filepath=liquidseps/pdfs/noreg/177-02319.pdf&fromPage=GetDoc http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_08d2/0901b803808d2eff.pdf?filepath=liquidseps/pdfs/noreg/177-03082.pdf&fromPage=GetDoc http://www.purolite.com/product/mn200

Cd extraction by impregnated Purolite MN 200 and Amberlite XAD-7

Cd standard solution (1000 ppm) in 2.5 % HNO₃ with pH = 0.45 was used for extraction to find out how much Cd is adsorbed by impregnated Purolite MN 200 and Amberlite XAD-7 without other metals present

Cd extraction results

Concentration of Cd, ppm			
Raffinate Purolite MN 200	Raffinate Amberlite XAD-7	Cd standard solution	
651	5	1000	

How is it possible?

Concentration, ppm			Concentration of Cd, ppm			
Element	Raffinate Purolite MN 200	Raffinate Amberlite XAD-7	ML	Raffinate Purolite MN 200	Raffinate Amberlite XAD-7	Cd std solution
Cu	14	13	27	651	5	1000
Cd	6	6	11			
Ni	24	15	23			
Fe	429	192	499			
Zn	273	240	314			

Stability of Purolite MN 200 ion exchange capacity

Conclusion

- Our impregnated resins extract Cd from solutions with oxidizing properties
- Purolite MN 200 and Amberlite XAD-7 in combination with Cyanex 301 give the highest Cd extraction yield

Work in progress

- Elution step
- Reuse of impregnated resins

