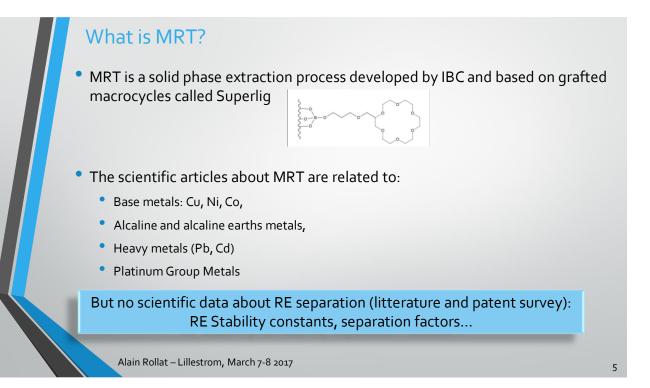


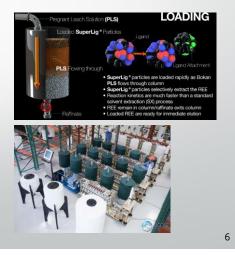
The RE separation process is important for 2 main reasons:

- The quality of the final application is mainly related to the purity of the REs used in the application
- The RE separation technology is a large part of the CAPEX and the OPEX of the RE industry



What are the new Solid Phase Extraction proposed as industrial processes?

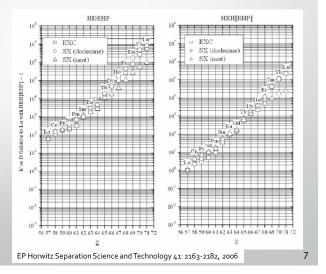
- A process based on columns containing a solid phase with complexing groups. The RE being separated during the elution.
- Among the various solid phase extraction processes, 2 of them have been proposed as industrial solutions:
 - Molecular Recognition Technology (MRT), proposed by IBC
 - Continous Ion Exchange (CIE) or Continuous Ion Chromatography (CIC) proposed by K Tech


Alain Rollat – Lillestrom, March 7-8 2017

4

What do we know about RE separation by MRT?

- An american RE junior mining company, UCORE, has chosen MRT for their RE separation technology, but due to confidentiality policy of IBC, Ucore did not answer to our questions about RE separation technology
- UCORE and IBC made a lot of commercial advertisements about RE separation using Superlig,
- A Pilot plant based on Ucore raw materials has been built. UCORE claims being able to separate RE, but still no scientific data.

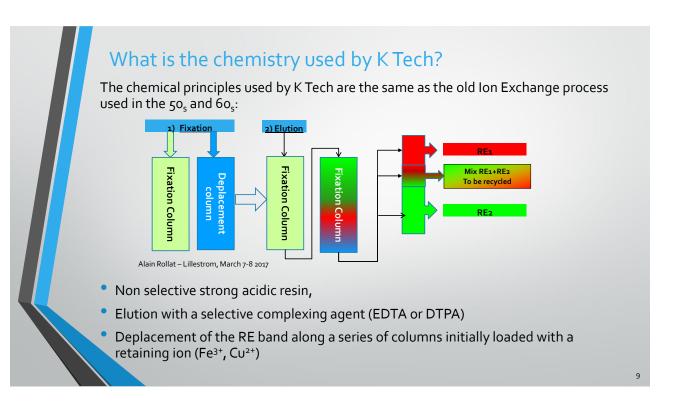

Impregnated resin, the alternative SPE process

 Since we don't have any data allowing us to assess MRT, we will assess Impregnated Resin process with known selective ligands. Several authors have worked on RE separation by impregnated or grafted resins or silica materials grafted with HDEHP

 Horwitz has compared the selectivities of HDEHP and H(EH)EHP both in solvent extraction conditions and in impregnated resin conditions. The results show a very similar behaviour.

 Horwitz gave also the basic data aiming to calculate a separation column (thermodynamic and kinetic data of fixation and elution).

Alain Rollat – Lillestrom, March 7-8 2017



What is Continuous Ion Exchange?

A classical Ion Exchange process from a chemical point of view ... working in a semi continuous way by using a carousel

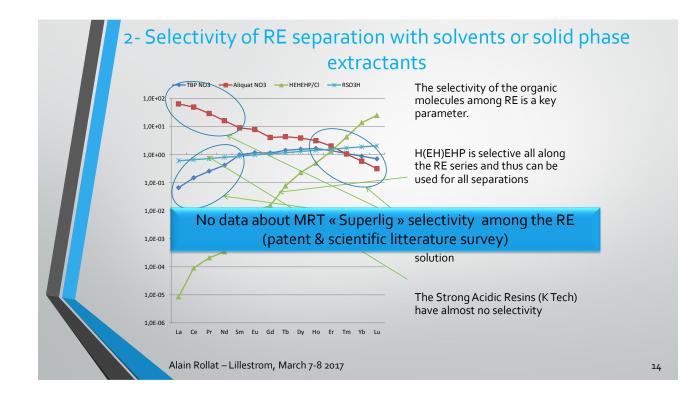
What are the drawbacks of SX and how to assess the new technologies?

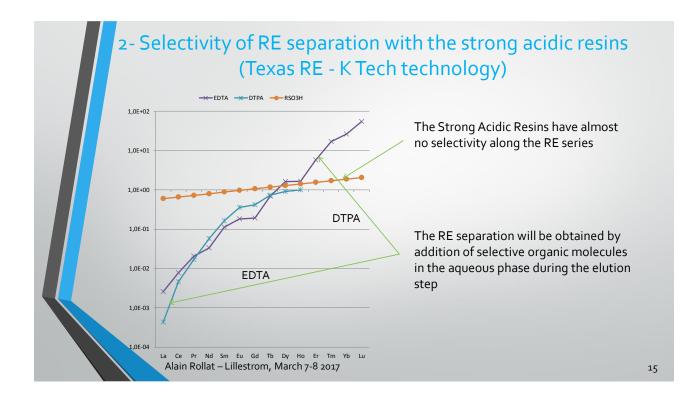
Main drawbacks of Solvent Extraction (as seen by RE producers)

- High CAPEX
- High working capital (RE stored in the SX batteries = hold up)
- High chemicals consumption (depending on the type of solvent used)
- How to assess the new technologies for RE separation?
 - Back to the basic:
 - What chemistry is used for RE separation and how it works?
 - How this chemistry and the process used (SX or Solid phase extraction) will impact on CAPEX, OPEX and waste water?

Chemistry of RE separation: All the processes use organic ligands

- Both Solid Phase Extraction (SPE= IEx or MRT) and Solvent Extraction (SX) use organic molecules (ligands) in order to get selectivity along the lanthanide series,
- The choice of the ligand will be of 1st importance in term of CAPEX, OPEX and waste water for both Solvent Extraction and Solid phase Extraction,
- The 3 criteria to assess a ligand:


	OPEX	CAPEX	Waste water
Chemical reaction involved	•		•
Selectivity between REEs	•	•	
Loading capacity		•	
Loading capacity		•	
Alain Rollat — Lillestrom, March 7-8 2017			


1- Chemical reaction between aqueous phase and organic phase

Acidic ligands	Neutral ligands	Anionic ligands
$RE_{aq}^{3+} {}_{aq}^{+} 3HL_{org} \Leftrightarrow [RE(L)_{3}]_{org} + 3H_{aq}^{+}$ Where HL is an acidic molecule	$RE_{aq}^{3+} + 3NO_{3aq}^{-} + nS_{org} \Leftrightarrow [RE(NO_{3})_{3r}nS]_{org}$ Where S is a neutral molecule	$\begin{array}{l} RE^{3^*}_{aq} + 3NO_3^{aq} + (R^*,NO_3^-)_{org} \Leftrightarrow \\ [[R^*,RE(NO_3^-)_4^-]_{org} \\ Where \; R^*,NO_3^- \text{ is anionic molecule} \end{array}$
Extraction step $RE^{3+}_{aq} + 3HL_{org} \rightarrow [RE(L)_{3}]_{org} + 3H^{+}_{aq} + 3OH^{-}_{aq}$ Consumption of alkaline solution (caustic or ammonia)	Extraction step $RE_{aq}^{3*} + _{3}NO_{3^{*}aq} + _{N}S_{org} \rightarrow [RE(NO_{3})_{3'}nS]_{org}$ High concentration in nitrate \Rightarrow Consumption of energy (steam)	Extraction step $RE_{aq}^{3*} + 3NO_{3}^{*}a_{q} + (R^{+}, NO_{3}^{-})_{org} \rightarrow$ $[R^{+}, RE(NO_{3})_{4}^{-}]_{org}$ High concentration in nitrate \Rightarrow Consumption of energy (steam)
Stripping step $[RE(L)_{3}J_{org} + 3H_{aq} \rightarrow RE_{aq}^{3+} 3H_{org}$ Consumption of acid (hydrochloric or nitric)	Stripping step $[RE(NO_3)_{3r}NS]_{org} + H_2O \rightarrow RE^{3+}_{aq} + 3NO_3^{-}_{aq}$ $+nS_{org}$ Consumption of water	Stripping step $[R^+,RE(NO_3)_4]_{org} + H_2O \rightarrow RE^{3+}_{aq} + 3NO_3^{-}_{aq} + (R^+,NO_3^{-})_{org}$ Consumption of water

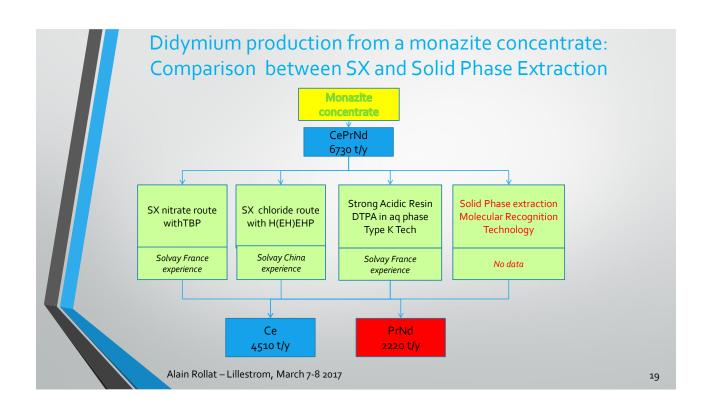
1- Chemical reaction between aqueous phase and organic phase

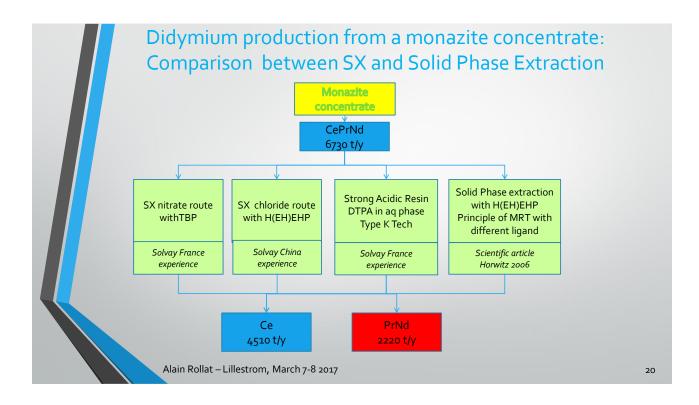
	Acidic molecules	Neutral molecules	Anionic molecukes
Route	Chloride or Nitrate	Nitrate	Nitrate or Thiocyanate
Typical molecules	H(EH)EHP (P507/ PC88A) Strong acidic resins	TBP Crown Ether (MRT?)	Aliquat 336 Ionic liquids
Main consumption	Loading: NaOH (NH4OH) Stripping: HCl (HNO3)	Loading: Steam Stripping: Water	Loading: Steam Stripping: Water
Variable costs	High	Low	Low
Waste water	NaCl or NH4NO3	No	No

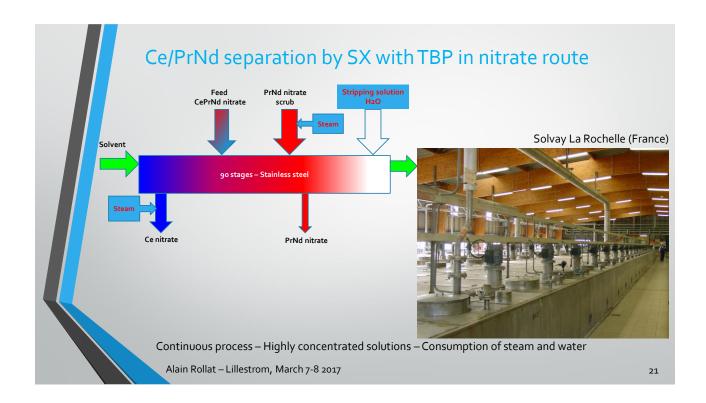
 The selectivity of the organic molecules among RE will impact both OPEX and CAPEX for both Solvent Extraction batteries and Solid Phase Exatraction columns

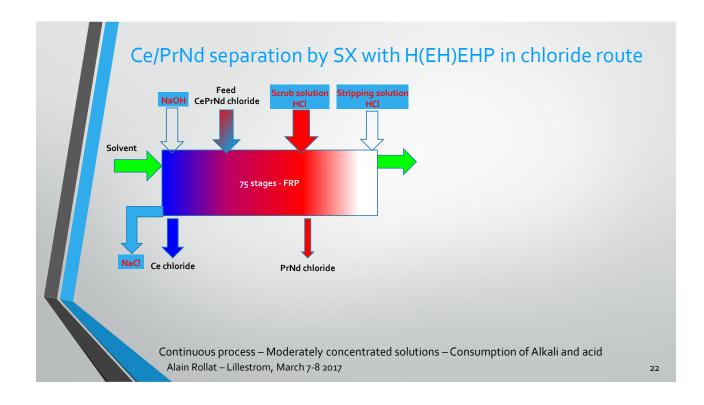
	Solvent extraction		Solid Phase Extraction		
	OPEX	CAPEX	OPEX	CAPEX	
Increase selectivity	Lower scrubbing = lower chemical or energy	Lower number of stages	Lower quantity of RE to be recycled		

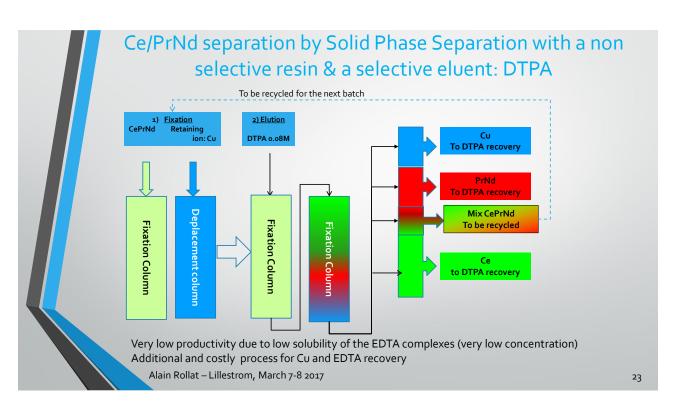
3- REO concentration in the aqueous phase and organic solvent or solid phase

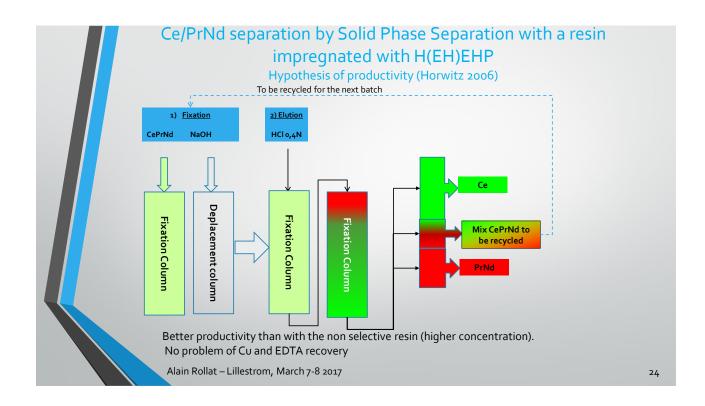

		Aqueous phase	Organic phase	Productivity
ion t	Cationic	50g/l to 150g/l	10g/l to 40g/l	Medium
Solvent extraction	Neutral	250g/l to 450g/l	50g/l to 150g/l	High
Sc ext	Anionic	150g/l to 350g/l	20g/l to 50g/l	Medium
lase ion	Selective organic molecule onto the solid phase (MRT?)	25g/l to 50g/l H(EH)EHP Horwitz 2006	40g/l to 50g/l H(EH)EHP Horwitz 2006	Medium
Solid phase extraction	Selective organic molecule in the aqueous phase (K Tech)	2g/l to 15g/l	50g/l to 150g/l	Low


Alain Rollat – Lillestrom, March 7-8 2017


The Example of didymium production The comparison between SX and Solid Phase Extraction


Alain Rollat – Lillestrom, March 7-8 2017


17



12

SX and Solid phase separation comparison for Didymium production (CAPEX estimate done in 2015)

		SX / TBP	SX / H(EH)EHP	Strong cationic resin with DTPA	Resin impregnated with H(EH)EHP
Aque	ous solution	Nitrate	Chloride or nitrate	Chloride or nitrate	Chloride or nitrate
Proce	55	Continuous	Continuous	Batch (Continuous ?)	Batch (Continuous?)
Varia	ble costs	0.2 \$/kg REO	o.7 \$/kg REO	3.8 \$/kg REO	o.7 \$/kg REO
RE Ho recyc	old up or RE to be led	Ce 51t PrNd 36t	Ce 20t PrNd 15t	17% of the RE for each batch	22% of the RE for each batch
C A	Equipment	7.8 M\$	6.5 M\$	12.7 M\$	2.3 M\$
P E X	Solvent / resin	8oo k\$	640k\$	15600 k\$ Lanxess prices for strong acid resin*	8900 k \$ Lanxess data for impregnated resin**
Waste water NaCl		None	930 kg/t REO	1180 kg/t REO	1260 kg/t REO
Other		Need to have a NH4NO3 valorization loop		Need Cu as retaining ion	Process studied only at lab scale

* Lewatit MDS 1268/290µ (RSO3H)

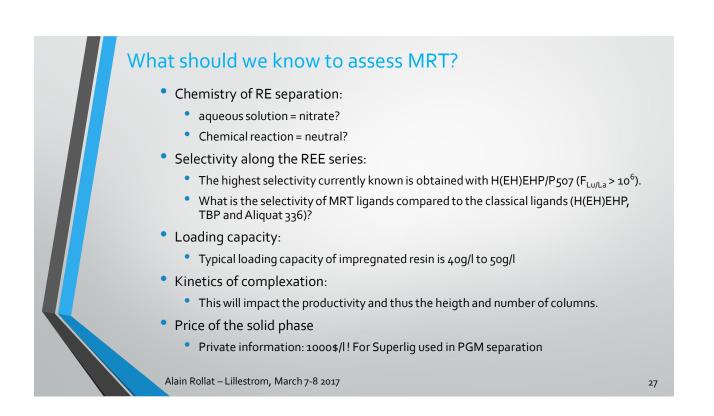
* *Lewatit TP272; contains bis(2,4,4 trimethyl pentyl) phosphinic acid

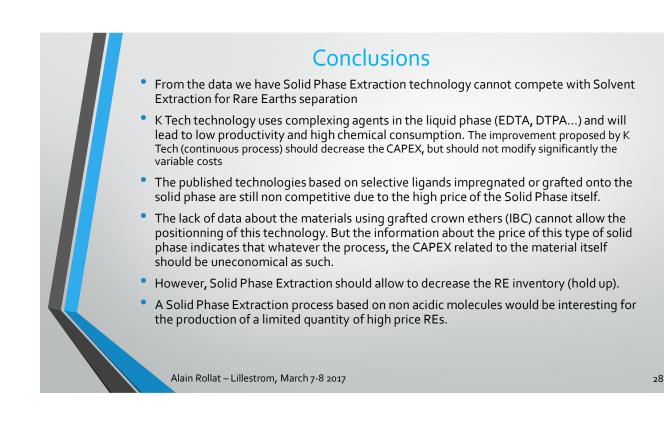
Alain Rollat – Lillestrom, March 7-8 2017

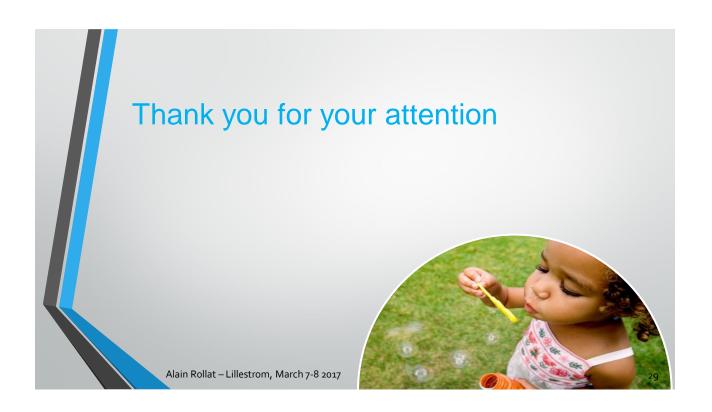
25

Can Solid Phase Extraction compete with Solvent Extraction

Continuous Ion Exchange using strong acidic resins:


Even if CIC can decrease the CAPEX compare to the batch lon Exchange, this process cannot be competetive due to the use of complexing agents


Resins impregnated with H(EH)EHP:


There is an interest in term of CAPEX (depending on the cost of the Solid Phase), but the OPEX cannot compete with a neutral extractant (TBP).

The losses of the ligand and the breakage of the resin have not been assessed,

• We have not been able to assess MRT. What should we know to really assess this technology?

