MgO and other chemicals from Olivine (Mg,_{Fe})₂SiO₄

Feasibility and Technical Options

Concepts and objectives

In this presentation, olivine is introduced as an economically interesting, alternative starting material to produce

- high quality magnesium metal,
- magnesium refractories,
- fertilizer components and
- base material for pure magnesium chemicals.

Focus is mainly on magnesium raw materials for Mg metal production.

Magnesium is the 8th most abundant element in the Earth's Crust, with a global average of 2.1%. In the Earth's Mantle, the concentration is more than10 times this, i.e. 22.2%. It is the third most abundant element dissolved in seawater with a concentration averaging around 0.14% by weight. In the entire universe, Mg is the 11th most abundant element (0.06%).¹⁾

The bulk of magnesium oxide minerals (MgO) are sold in 3 varieties:

- caustic calcined magnesia (CCM),
- dead-burned magnesia (DBM) and
- electro fused magnesia (EFM).

Only CCM which has the largest and therefore most reactive surface area is technically suited to be used for magnesium metal production. The present prevailing production method for magnesium metal requires a 50/50 mixture of calcium and magnesium oxide, obtained by calcination of dolomite.

1): Source::http://periodictable.com/Properties/A/UniverseAbundance.v.log.htm

Desirable Processing Attributes

- Low Cost
- Minimium Wastes / Green
- Proven Process
- No or few difficult unit operations
- Low CO₂ footprint

Selected Possible Route

- NH₄HSO₄ ammonium-bi- sulfate leaching is a patented process*(expired), but has not been commercialized.
- Advantageous because recycling of the reagent is straight-forward and low cost and offers flexibility in production lay-out

*A patent by Frederick L. Pundsack (U.S. 3,338,667, 1967) called the "Recovery of Silica, Iron Oxide and Magnesium Carbonate from the Treatment of Serpentine with Ammonium Bisulfate"

NH₄HSO₄ - Ammonium BiSulfate

What is ammonium bisulfate? How is it made?

 $NH_3 + H_2SO_4 \rightarrow NH_4HSO_4$

17 units of NH₃ 98 units of H₂SO₄

A concentrated solution has a pH ~ 1

Very soluble Soluble in methanol

Solubility in other solvents insoluble in acetone

Solubility in water

Leaching Variables: • Temperature • Mesh size / particle size • Excess acid/reagent • Agitation • Time	<u>Note:</u> (MgO.FeO)SiO ₄ , treated as MgO, FeO and SiO ₂ in reactions SiO ₂ will be "inert"
Major Leaching Reactions	Will NH ₄ HSO ₄ attack olivine
$MgO + 2NH_4HSO_4> MgSO_4 + (NH_4)_2SO_4 + H_2O$	with appropriate recovery?
$FeO + 2NH_4HSO4> FeSO_4 + (NH_4)2SO_4 + H_2O$	THE A
$Fe_2O_3 + 6 NH_4HSO4> Fe_2(SO_4)_3 + 3 (NH_4)_2SO_4 + 3H_2$	20
[CaO + 2NH ₄ HSO ₄ > CaSO <u>4</u> + (NH ₄) ₂ SO ₄ +H ₂ O]	

	5% of (NH4)2SO4 capacity sold, fix	ted loss see text						
	Revenue		mtpy	\$/ton	\$/lb		\$10	^3/yr
		MgO	49,060	250			\$	12,265
		SiO2	41,110	384			\$	15,786
		Fe/Ni/O	7,458	for Ni	2		\$	0.57
		(NH4)2SO4*	10,129	300			\$	3,039
				Total			\$	31,091
	Raw Mater	ials	mtpy	\$/ton	\$/lb		\$10	^3/yr
		Olivine	100,000	35			\$	3,500
		NH3	2,236	\$310			\$	693
• •		H2SO4	12,893	140			\$	1,805
Economics		H2O2	1,360	1543.5			\$	2,099
	_			Total Raw I	Materials		\$	8,097
with 5% of	Energy		mtpy	\$/ton			\$10	^3/yr
		H2O Evap	386,382	6.25			\$	2,415
$(NH_{4})_{0}SO_{4}$		Decompositon of (NH4)2SO4**	331,386	100	kwh/ton			1,657
(****4)2***4		Pumping solutions		1080619	kwh	\$0.05		\$54
Canacity Sold		Heating Leaching Solns	813,089	\$1			\$	813
Cupucity solu		** Assumptn need data		Total Energ	gy		\$	4,939
	Labor		no per shift	avg \$/wrk	shifts			
		Labor	10	80,000	4			3200
		Maintenance						3750
				Total Labo	r & Maint.			6950
		\$10^3		Total Direc	et			19,986
	Capital Costs	\$ 125,000		Indireact	40%	labor		1 280

Maint 3%

Payback yrs

\$

3,750.00

13

Total Costs

Gross Profits

21,266

9,825

\$

Economics with 100% of (NH₄)₂SO₄ Capacity Sold

100%	of (NH4)2SO4 capacity sold, fi	red loss see text					
Revenue		mtpy	\$/ton	\$/lb		\$10	^3/yr
	MgO	49,060	250			\$	12,265
	SiO2	41,110	384			\$	15,786
	Fe/Ni/O	7,458	for Ni	2		\$	0.57
	(NH4)2SO4*	297,583	300			\$	89,275
			Total			\$	117,327
Raw Materials		mtpy	\$/ton	\$/1b		\$10	^3/yr
	Olivine	100,000	35			\$	3,500
	NH3	44,730	\$310			\$	13,866
	H2SO4	257,853	140			\$	36,099
	H2O2	1,360	1543.5			\$	2,099
			Total Raw I	Materials		\$	55,564
Energy		mtpy	\$/ton			\$10	^3/yr
	H2O Evap	386,382	6.25			\$	2,415
	Decompositon of		100	kwh/ton			
	Dumning solutions	-	1080610	kwh/ton	\$0.05		\$54
	Hasting Lesching Solutions	813.080	\$1	KWII	\$0.0J	\$	9J4 813
	** Assumpto need data	015,005	Total Energ	w		\$	3 282
Labor	rissunpurneed data	no per shift	avo \$/wrk	shifts		Ű	5,202
	Labor	10	80 000	4			3200
	Maintenance		,				3750
			Total Labor	r & Maint			6950
	\$10^3		Total Direc	t			65,796
Capital Costs	\$ 125.000		Indireact	40%	labor		1.280
Maint 3%	\$ 3.750.00		Total Cost	s			67.076
Pavhack vrs	2		Gross Prof	its		\$	50.250

Other Processing Options – H2SO4 & NH3

Pro's

- Simpler Flowsheet, no recycling of reagents
- Lower Capital Cost less equipment
- Leaching recovery at same grind size may be higher

Cons

No flexibility in output of (NH₄)₂SO₄, tied to MgO output

Unknown

- Economics have not been evaluated, but expected to be slightly better than $\rm NH_4HSO_4$

Summary of Options

Options for making MgO from Olivine include:

- NH₄HSO₄ Process with production of micro-silica, iron oxide, MgO and as-sold amount of (NH₄)₂SO₄
 - Low cost
 - Allows flexibility in product mix
- 2. H_2SO_4 with NH₃ for with production of micro-silica, iron oxide, MgO, and $(NH_4)_4SO_4$
 - Need low cost supply of H₂SO₄
 - Must sell (NH₄)₂SO₄
 - Lowest capital costs.
- 3. H₂SO₄ and MgO with H₂SO₄ regeneration for production of micro-silica, iron oxide, MgO and MgSO₄.
 - Highest operating and capital cost
 - Need over the fence acid plant to make this option competitive

11

Micro Silica (Fumes) notes

Silica Fume theoretical 1.5 million tons, less than 1 million tons used, limited growth, maybe 2 M tons theoretical in future

- Fly Ash availability > 700 million tons, increasing rapidly to?? (2000 million tons in 2020?)
- Other pozzolans:
- Mainly manufactured materials limited by capacity
- GGBS (Ground granulated Blast Furnace Slag) 200 million tons?
- Limited increase tied to steel production

Source: http://www.ibracon.org.br/eventos/50cbc/plenarias/PER_FIDJESTOL.pdf

Magnesia Recovery

Mg Precipitation

- Requires NH3 to raise pH and
- CO2 to make carbonate
 MgCO3.Mg(OH)2.5H2O
- NH3 and CO2 Recycled
- Alternative with NH3 alone ??

MgCO3.Mg(OH)2.5H2O Decomposition

- >350 deg. C ?
- Liberates MgO, CO2, H2O

Iron Removed by raising pH with NH3

Iron Precipitation

- Oxidize any Ferrous iron to Ferric Iron
 - Ammonium Persulfate or
 - H2O2
 - ? Which more cost efficient?
 - Raise pH with NH3
 - Fe+3 → Fe(OH)3
 - Difficult to filter
 - Dry

٠

