Eh-pH diagram Often called Pourbaix diagram

Lecture in hydrometallurgy November 2016 By Dag Øistein Eriksen

Content:

- The red-ox potential of a solution
 - How to measure it
- The use of Eh-pH diagrammes
- How to construct Eh-pH diagrammes

Short history

- First Eh-pH diagram presented by M. Pourbaix in 1949
- Applies mainly to dilute aqueous solutions
- Is dependent upon the knowledge of speciation
- Has proven valuable in leaching in particular
- Eh-pH diagrams do not exclude the use of speciation plots as a function of pH, e.g.:

The red-ox potential of a solution

• Key equation is Nernst:

$$E = E^0 - \frac{RT}{nF} lnQ,$$

F is Faraday's constant, Q is activity ratio of products relative to reactants

- E.g.: $Fe^{3+} + e^- \leftrightarrow Fe^{2+}$, Q = {Fe²⁺}/{Fe³⁺} & n=1

- E⁰ is reduction potential at T= 298.15 K and 0.1 M
- At equilibrium, Q = K

The red-ox potential of a solution

- Consider the dissolution of Ag in HNO₃:
 - $Ag^+ + e^- \rightarrow Ag$, $E^0 = 0.7996 V$ $NO_3^- + 4H^+ + 3e^- \rightarrow NO + H_2O$, $E^0 = 0.957 V$
- The Ag|AgCl-electrode is often used for reference as AgCl is a stable salt:
 - $AgCl(s) + e^{-} \leftrightarrow Ag(s) + Cl^{-}(aq)$, $E^{0} = 0.22233 V$
 - In saturated KCl @ 25° C E = 0.197 V
- Example: Solubility product of AgCl: AgCl(s) ↔ Ag⁺(aq)+ Cl⁻(aq)
- Divide into the two half cell reactions above and use Nernst eq.: $\Delta E = 0 = \Delta E^0 - (RT/F) \ln(\{Ag^+\}\{Cl^-\})$
- InK_{sp} = (0.2223-0.7996)F/RT => pK_{sp} = -logK_{sp} = 9.76 @ 25°C

How to measure Eh

- A useful cell: Ag|AgCl|3M KCl|solution|Pt ∆V between Ag and Pt
- Important parameters:
 - Dissolved O_2 flush w. Ar
 - Temperature keep constant
 - Stirring homogeneity

Example: Reduction of Ce(IV) with HNO₂

 $3HNO_2 \rightarrow 2NO + NO_3^- + H^+ + H_2O$

The need for pH (or mV)

- In many redox-reactions acidity is imperative
 - $-\operatorname{BrO}_3^- + 5\operatorname{Br}^- + 6\operatorname{H}^+ \rightarrow 3\operatorname{Br}_2 + 3\operatorname{H}_2\operatorname{O}$
 - $CuFeS_2 + 16Fe^{3+} + 8H_2O \leftrightarrow Cu^{2+} + 17Fe^{2+} + 2SO_4^{2-} + 16H^+$
 - $CuFeS_2 + 4Fe^{3+} \leftrightarrow Cu^{2+} + 5Fe^{2+} + 2S^0$
- In sulphidic ores it may be more easy to oxidize sulphide than produce H₂S.
 Often such ores are roasted first: S⁰ → SO₂(g)

$$-SO_2(g) + \frac{1}{2}O_2 \xrightarrow{V_2O_5} SO_3(g)$$

How to measure pH

- Measure mV, not pH!
- pH < 0 is usually related with high uncertainty

- Most pH-meters only use two or three buffers to construct the calibration curve
- Constructing the line manually, e.g. using Origin software, we can use as many buffers as we have
- Easier to measure mV

When to use Eh-pH diagrammes?

- When the metal has more than one oxidation state, e.g. Cu⁺ vs. Cu²⁺ or Fe²⁺ vs. Fe³⁺.
- When combining two metals, e.g. Cu and Fe
- When the metal is hydrolysed
- When the metal forms strong complexes
- When anion has more than one oxidation state, e.g. CuS vs. CuSO₄

Solubility of lead in produced water (PW) and in sea water

PW - Troll

Sea water

Stability of Pb in PW and sea water

Eh-pH diagrams are usually much more instructive

Low probability that lead is in solution. It will probably be attached to particulates.

Metal has more than one oxidation state

 Mn as example: Mn-H₂O system

Article The Eh-pH Diagram and Its Advances

Hsin-Hsiung Huang

Received: 29 July 2015; Accepted: 28 December 2015; Published: 14 January 2016

Metal has more than one oxidation state – and/or forms stable salts/complexes

Article The Eh-pH Diagram and Its Advances

Hsin-Hsiung Huang

Received: 29 July 2015; Accepted: 28 December 2015; Published: 14 January 2016

Combining two metals

 Chalcopyrite is an important source for Cu

- CuFeS₂

Chalcopyrite-NaCN-H₂O System

Xiuli Yang^{a,b}, Xiong Huang^b, Tingsheng Qiu^b and Xiangke Jiao^c

MINERAL PROCESSING AND EXTRACTIVE METALLURGY REVIEW 2016, VOL 37, NO. 2, 134–138 http://dx.doi.org/10.1080/08827508.2015.1115989

How to construct Eh-pH diagrammes

- Based on Ch.3.3 in M.
 Free: Hydrometallurgy
 - Write out the species to be considered
 - Write out chemical equilibria
 - Calculate equations for equilibrium lines
 - Activities are to be used, not concentrations

1. E.g.:

Zn, ZnO, ε-Zn(OH)₂, Zn²⁺, ZnOH⁺, Zn(OH)₂, Zn(OH)₃⁻, Zn(OH)₄²⁻

 $Zn^{2+} + H_2O \leftrightarrow ZnOH^+ + H^+$ $Zn^{2+} + nOH^- \leftrightarrow Zn(OH)_n^{2-n}$

3.
$$E = E^0 - \frac{RT}{nF} \ln \frac{\{red\}}{\{ox\}}$$

Published results on Zn:

B.Beverskog & I. Puigdomenech, Corrosion Science, Vol.39, No.1, 107-114 (1997)